- Ley de Coulomb y principio de superposición
- El campo electrostático
- Formulación diferencial de las ecuaciones del campo
- El potencial electrostático
- Ejemplos de problemas de sumación
- Formulación integral de las ecuaciones del campo. Ley de Gauss
- Conductores y dieléctricos
- Desarrollo multipolar del potencial creado por una distribución de carga
- El dipolo eléctrico y la capa dipolar
- Formulación del problema
- Vector polarización. Cargas de polarización
- El vector desplazamiento eléctrico
- Relaciones constitutivas. Susceptibilidad y permitividad eléctrica
- Condiciones en la frontera entre dos dieléctricos
- Teorema de Green. Representación integral del potencial
- Unicidad de solución del problema electrostático
- Sistemas de conductores
- Ley de Ampere. Vector B
- Ecuaciones del campo magnetostático
- El potencial vector
- Desarrollo multipolar del potencial vector creado por una distribución de corriente. Dipolo magnético
- El potencial escalar magnético
- Otros ejemplos de problemas de sumación
- Formulación del problema
- Vector imanación. Corrientes de imanación
- Ecuaciones del campo. Vector H
- Relaciones constitutivas. Susceptibiblidad y permeabilidad magnética
- Condiciones en la frontera entre dos medios magnéticos
- Teorema vectorial de Creen. Representación integral del potencial vector
- Unicidad de la solución del problema magnetostático
- Solución formal del problema electrostático
- Determinación de la función de Creen. Método de imágenes
- Transformación de inversión
- Separación de variables en coordenadas cartesianas
- Separación de variables en coordenadas cilíndricas
- Separación de variables en coordenadas esféricas
- Generalización del potencial axial en problemas con simetría azimutal
- Desarrollo de la función de Creen en coordenadas cartesianas
- Desarrollo de la función de Creen en coordenadas cilíndricas
- Desarrollo de la función de Creen en coordenadas esféricas
- Relaciones de Green en dos dimensiones
- Funciones de Green complejas
- Determinación de la función de Green. Método de imágenes
- Transformación de Schwarz-Christoffel
- Método de diferencias finitas
- Coeficientes y funciones numéricas de Green
- El método de Monte Carlo
- El método de elementos finitos
- Ley de inducción de Faraday
- Corriente de desplazamiento
- Ondas planas en medios no conductores
- Ondas planas en medios conductores
- Función de Green para la ecuación de onda con fuentes
- Origen de las aproximaciones
- El dipolo oscilante
- Energía de formación de una distribución de cargas en el vacío
- Energía de interacción de una distribución de carga con un campo externo
- Energía de un sistema de conductores
- Energía electrostática en medios dieléctricos
- Interpretación termodinámica de la energía electrostática Fuerzas en sistemas electrostáticos
- Expresiones de la fuerza a partir de la energía.
- El tensor eléctrico de Maxwell.
- Fuerza sobre conductores
- Fuerza sobre dieléctricos
- Energía magnetostática de una distribución de corriente
- Energía de un cuerpo en un campo magnetostático
- Expresiones de la fuerza a partir de la energía
- Teorema de Poynting
- Teorema de unicidad para los campos
- El teorema de Poynting en situaciones armónicas
- Momento del campo electromagnético
- Bases físicas de las transformaciones de Lorentz
- Las transformaciones de Lorentz
- Intervalo y cono de luz
- Cuadrivectores y cuadritensores
- Representación matricial de las transformaciones de Lorentz
- Transformación de fuentes. Ecuación de continuidad
- Transformación de potenciales
- El tensor campo electromagnético
- Forma covariante de las ecuaciones de Maxwell
Jose Fernandez
Opinión sobre el Especialista en Electromagnetismo
Jose Fernandez, ¿qué te hizo decidirte por nuestro Curso en linea?
temario
Jose Fernandez, ¿qué has aprendido en el Curso en linea?
analisis
Jose Fernandez, ¿qué es lo que más te ha gustado de este Curso en linea?
matematicas
Jose Fernandez, ¿qué has echado en falta del Curso en linea?
el tutor
María Gonzalez
Opinión sobre el Especialista en Electromagnetismo
María Gonzalez, ¿qué te hizo decidirte por nuestro Curso en linea?
No autorizo
María Gonzalez, ¿qué has aprendido en el Curso en linea?
nada
María Gonzalez, ¿qué es lo que más te ha gustado de este Curso en linea?
Sí
María Gonzalez, ¿qué has echado en falta del Curso en linea?
10
Más de 20 años de experiencia en la formación online.
Más de 300.000 alumnos ya se han formado en nuestras aulas virtuales.
Alumnos de los 5 continentes.
25% de alumnado internacional.
4,7 |
2.625 opiniones |
8.582 |
suscriptores |
4,4 |
12.842 opiniones |
5.856 |
seguidores |
100% Online
Estudia cuando y desde donde quieras. Accede al campus virtual desde cualquier dispositivo.
Equipo docente especializado
Euroinnova cuenta con un equipo de profesionales que harán de tu estudio una experiencia de alta calidad educativa.
Aprendizaje para la vida real
Con esta estrategia pretendemos que los nuevos conocimientos se incorporen de forma sustantiva en la estructura cognitiva del alumno.
No estarás solo
Acompañamiento por parte del equipo de tutorización durante toda tu experiencia como estudiante.
Se llevan a cabo auditorías externas anuales que garantizan la máxima calidad AENOR.
Nuestros procesos de enseñanza están certificados por AENOR por la ISO 9001, 14001 y 27001.
Contamos con el sello de Confianza Online y colaboramos con las Universidades más prestigiosas, Administraciones Públicas y Empresas Software a nivel Nacional e Internacional.
Disponemos de Bolsa de Empleo propia con diferentes ofertas de trabajo, y facilitamos la realización de prácticas de empresa a nuestro alumnado.
En la actualidad, Euroinnova cuenta con un equipo humano formado por más de 300 profesionales. Nuestro personal se encuentra sólidamente enmarcado en una estructura que facilita la mayor calidad en la atención al alumnado.
Como parte de su infraestructura y como muestra de su constante expansión, Euroinnova incluye dentro de su organización una editorial y una imprenta digital industrial.
Financiación 100% sin intereses
Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Euroinnova.
Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.
Como premio a la fidelidad y confianza de los alumnos en el método EUROINNOVA, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.
Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.
Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.
La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.
* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 900 831 200 o vía email en formacion@euroinnova.es
* Becas no acumulables entre sí.
* Becas aplicables a acciones formativas publicadas en euroinnova.es